Remote homology between Munc13 MUN domain and vesicle tethering complexes.

نویسندگان

  • Jimin Pei
  • Cong Ma
  • Josep Rizo
  • Nick V Grishin
چکیده

Most core components of the neurotransmitter release machinery have homologues in other types of intracellular membrane traffic, likely underlying a universal mechanism of intracellular membrane fusion. However, no clear similarity between Munc13s and protein families generally involved in membrane traffic has been reported, despite the essential nature of Munc13s for neurotransmitter release. This crucial function was ascribed to a minimal Munc13 region called the MUN domain, which likely participates in soluble N-ethylmaleimide sensitive factor attachment protein receptor complex (SNARE) assembly and is also found in Ca(2+)-dependent activator protein for secretion. We have now used comparative sequence and structural analyses to study the structure and evolutionary origin of the MUN domain. We found weak yet significant sequence similarities between the MUN domain and a set of protein subunits from several related vesicle tethering complexes, such as Sec6 from the exocyst complex and Vps53 from the Golgi-associated retrograde protein complex. Such an evolutionary relationship allows structure prediction of the MUN domain and suggests functional similarities between MUN domain-containing proteins and multisubunit tethering complexes such as exocyst, conserved oligomeric Golgi complex, Golgi-associated retrograde protein complex, and Dsl1p. These findings further unify the mechanism of neurotransmitter release with those of other types of intracellular membrane traffic and, in turn, support a role for tethering complexes in soluble N-ethylmaleimide sensitive factor attachment protein receptor complex assembly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CAPS and Munc13: CATCHRs that SNARE Vesicles

CAPS (Calcium-dependent Activator Protein for Secretion, aka CADPS) and Munc13 (Mammalian Unc-13) proteins function to prime vesicles for Ca(2+)-triggered exocytosis in neurons and neuroendocrine cells. CAPS and Munc13 proteins contain conserved C-terminal domains that promote the assembly of SNARE complexes for vesicle priming. Similarities of the C-terminal domains of CAPS/Munc13 proteins wit...

متن کامل

Functional synergy between the Munc13 C-terminal C1 and C2 domains

Neurotransmitter release requires SNARE complexes to bring membranes together, NSF-SNAPs to recycle the SNAREs, Munc18-1 and Munc13s to orchestrate SNARE complex assembly, and Synaptotagmin-1 to trigger fast Ca(2+)-dependent membrane fusion. However, it is unclear whether Munc13s function upstream and/or downstream of SNARE complex assembly, and how the actions of their multiple domains are int...

متن کامل

Secretory vesicle priming by CAPS is independent of its SNARE-binding MUN domain.

Priming of secretory vesicles is a prerequisite for their Ca(2+)-dependent fusion with the plasma membrane. The key vesicle priming proteins, Munc13s and CAPSs, are thought to mediate vesicle priming by regulating the conformation of the t-SNARE syntaxin, thereby facilitating SNARE complex assembly. Munc13s execute their priming function through their MUN domain. Given that the MUN domain of Ca...

متن کامل

Non - conserved Ca 2 + / calmodulin binding sites in Munc 13 s differentially 1 control synaptic short - term plasticity 2 3

39 40 Munc13s are presynaptic proteins that mediate synaptic vesicle priming and thereby control 41 the size of the readily releasable pool of vesicles. During high synaptic activity, Munc13-1 42 and its closely related homolog ubMunc13-2 bind Ca 2+ /calmodulin, resulting in enhanced 43 priming activity and in changes of short-term synaptic plasticity characteristics. Here, we 44 studied whethe...

متن کامل

Functional Interaction of the Active Zone Proteins Munc13-1 and RIM1 in Synaptic Vesicle Priming

Synaptic neurotransmitter release is restricted to active zones, where the processes of synaptic vesicle tethering, priming to fusion competence, and Ca2+-triggered fusion are taking place in a highly coordinated manner. We show that the active zone components Munc13-1, an essential vesicle priming protein, and RIM1, a Rab3 effector with a putative role in vesicle tethering, interact functional...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 391 3  شماره 

صفحات  -

تاریخ انتشار 2009